How to... Compute extrema
 of real-valued functions

Given: A differentiable, real-valued function $f: \mathbb{R} \rightarrow \mathbb{R}$.
Wanted: All local and global extrema.

Example

We consider the function

$$
f(x)=x^{3}-6 x^{2}+9 x-1
$$

1 Find possible extreme points
Compute the first derivative f^{\prime} of f, then find the roots x_{i} of f^{\prime}, i.e. solve

$$
f^{\prime}(x)=0
$$

The first derivative of f is

$$
f^{\prime}(x)=3 x^{2}-12 x+9
$$

We compute the roots (in this case, one may use the "completing the square"method (quadratische Ergänzung) or the p-q-formula) as follows:

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\Leftrightarrow 3 x^{2}-12 x+9 & =0 \\
\Leftrightarrow x^{2}-4 x+3 & =0 \\
\Leftrightarrow x_{1}=1 & \text { or } x_{2}
\end{aligned}=3
$$

The points $x_{1}=1$ and $x_{2}=3$ are possible extreme points.

2 Determine the type of extreme points

There multiple ways of determining if a possible extreme point is a maximum or a minimum (or neither). Sometimes there might be other, more easy arguments to proof that a point is a maximum/minimum than the two presented in the following.

a Option A: Compute higher derivatives

Compute the second derivative and check the following criterion at the possible extreme points:
If $f^{\prime \prime}\left(x_{i}\right)>0\left(\right.$ while $\left.f^{\prime}\left(x_{i}\right)=0\right)$ then x_{i} is a minimum.
If $f^{\prime \prime}\left(x_{i}\right)<0$ (while $f^{\prime}\left(x_{i}\right)=0$) then x_{i} is a minimum.

Note: If $f^{\prime \prime}\left(x_{i}\right)=0$ then nothing is known about x_{i}.

b Option B: Study the monotonicity of the function

We can use the following facts to find maxima and minima of a function.
f is increasing in x if $f^{\prime}(x) \geq 0$.
f is decreasing in x if $f^{\prime}(x) \leq 0$.
f has a maximum at x_{i} if f is increasing before and decreasing after x_{i}.
f has a minimum at x_{i} if f is decreasing before and increasing after x_{i}.
By determining the intervals where $f^{\prime}(x)>0$ and $f^{\prime}(x)<0$ we can easily infer where the maxima and minima of f lie.

a Option A:

We compute the second derivative as

$$
f^{\prime \prime}(x)=6 x-12
$$

Thus, $f^{\prime \prime}\left(x_{1}\right)=f^{\prime \prime}(1)=6-12=-6<0$ and $f^{\prime \prime}\left(x_{2}\right)=f^{\prime \prime}(3)=16-12=6>0$ and, hence, there is a local maximum at $x_{1}=1$ and a local minimum at $x_{2}=3$.

b Option B:

The first derivative can be written as

$$
f^{\prime}(x)=(x-1)(x-3)
$$

(Note that it is easy to obtain this form in the most cases, as you already know the roots of your function.) For $x<1$ both terms are negative $((x-1)<0$ and $(x-3)<0)$, for $1<x<3$ only the second term is negative $((x-1)>0$ and $(x-3)<0$, and for $x>3$ both terms are positive $((x-1)>0$ and $(x-3)>0)$. Thus, we have
f is increasing ($f^{\prime}(x)>0$) for $x<1$
f is decreasing $\left(f^{\prime}(x)<0\right)$ for $1<x<3$
f is increasing $\left(f^{\prime}(x)>0\right)$ for $x>3$
So, there is a local maximum at $x=1$ and a local minimum at $x=3$.

3 Find the global maxima/minima
To find the global extrema, compare the function values of all maxima and the limits for $x \rightarrow \pm \infty$ to find the global maximum (or to find that none exists) and compare the function values of all minima and the limits for $x \rightarrow \pm \infty$ to find the global minimum (or to find that none exists).

There is only one maximum at $x_{1}=1$ with value $f\left(x_{1}\right)=3$. But this maximum is not global as $\lim _{x \rightarrow \infty} f(x)=+\infty$, hence $f\left(x_{1}\right)=3$ is not the largest possible value of x.
There is only one minimum at $x_{2}=3$ with value $f\left(x_{2}\right)=-1$. But this maximum is not global as $\lim _{x \rightarrow-\infty} f(x)=-\infty$, hence $f\left(x_{2}\right)=-1$ is not the largest possible value of x.
Thus f has neither a global maximum nor a global minimum.

